Tutkimuksen tavoitteena oli selvittää laser- ja digitaalikuvatekniikkaan perustuvan mittalaitteen (laserkamera) mittaustarkkuus- ja tehokkuus sekä tekninen toimivuus ja soveltamisedellytykset metsäolosuhteissa. Laserkamera koostuu Canonin EOS 400D -digitaalisesta järjestelmäkamerasta, johon on liitetty Mitsubishin ML101J27 -laserdiodin pohjalle rakennettu viivalasergeneraattori. Läpimitan mittaus perustuu runkoon heijastettavaan laserviivaan ja pisteeseen, joiden avulla digitaalikuvasta voidaan mitata puun läpimitta. Tutkimusaineisto kerättiin talvella 2007–2008 kolmeltatoista ympyräkoealalta (r = 7,98–10 m) ja se käsitti 728 läpimittahavaintoa (d1,3) 265 puusta. Läpimitan mittauksen keskivirhe koko aineistossa oli 6 mm, kun läpimitta mitattiin kuvatulkintaohjelmalla puoliautomaattisesti. Puulajeittain paras tarkkuus saavutettiin kuusella 5,0 mm (4,4 %), sitten koivulla 6,4 mm (3,3 %) ja männyllä 7,6 mm (7,6 %). Laserkamera antoi keski määrin lievän yliarvion (2,3 %) rinnankorkeusläpimitasta. Läpimitan mittaus puoliautomaattista kuvatulkintaa käyttäen onnistui 80 %:lle havainnoista. Täysin automaattista kuvatulkintaa käyttäen läpimitan mittauksen keskivirheeksi saatiin 12,7 mm:ä. Mittaus laserkameralla on nopeaa (10 s / puu) ja läpimitan mittauksen tarkkuus kilpailukykyinen perinteisten mittausmenetelmien kanssa. Suurimmat virhelähteet aiheutuvat oksista (näkyvyys), jolloin laserpiste ei osu runkoon ja mittaus epäonnistuu. Laserkamera on varsin lupaava mittalaite rungon läpimitan mittaamiseen. Liittämällä laitteeseen kulma-anturi, laseretäisyysmittari, elektroninen kompassi sekä GPS-vastaanotin mahdollistaa se puun pituuden, sijainnin sekä laatutunnusten mittaamisen koealalla.
Tutkimuksessa selvitettiin korkearesoluutioisen E-SAR-tutkakuvan tarkkuutta koealatason metsikkötunnusten estimoinnissa. E-SAR-tutkakuvaukset suoritettiin syksyllä 2000 ja keväällä 2000 ProSmart II -projektissa, jonka tarkoituksena oli tutkia tuolloin suunnitteilla olleen TerraSAR-X-satelliittisysteemin potentiaalisia sovellusalueita. Metsikkötunnusten estimointi tehtiin käyttäen ei- parametrista k:n lähimmän naapurin (k-nn) -menetelmää ja tarkkuuden arviointi ristiinvalidiointi-menetelmällä. Estimoituja metsikkötunnuksia olivat kokonaistilavuus, puulajikohtaiset tilavuudet ja osuudet, pohjapinta-ala, keskipituus ja keskiläpimitta. E-SAR-tulkinnan tarkkuutta verrattiin numeeristen ilmakuvien sekä keskiresoluution optisen aallonpituusalueen Landsat ETM -satelliittikuvien tarkkuuteen. Maastoaineistona käytettiin 199 relaskooppikoealaa. E-SAR-estimoinnin suhteelliset RMSE-arvot olivat parhaimmillaan kokonaistilavuudelle, keskiläpimitalle, keskipituudelle ja pohjapinta-alalle 44,8 %, 27,8 %, 27,5 %, 38,3 %. Vertailuaineistona olleille numeerisille ilmakuville vastaavat suhteelliset RMSE-arvot olivat 49,3 %, 25,6 %, 26,5 % ja 40,6 % ja Landsat ETM -kuville 58,3 %, 38,5 %, 34,5 % ja 46,9 %. E-SAR-tutkakuvat toimivat parhaiten kokonaistilavuuden estimoinnissa, jossa niiden tuottama estimointitarkkuus oli huomattavasti sekä ilmakuvaa että Landsat ETM-kuvaa tarkempi. Keskiläpimitan, keskipituuden ja pohjapinta-alan estimoinnissa E-SAR-tutkakuvat sekä numeeriset ilmakuvat tuottivat suurinpiirtein yhtä tarkan tuloksen, joka oli kuitenkin huomattavasti Landsat ETM -kuvaa parempi. Puulajien tilavuuksien ja osuuksien osalta numeeriset ilmakuvat tuottivat E-SAR-kuvia tarkemman estimointituloksen.
Tutkimuksessa tarkasteltiin puustotunnusten ajantasaistuksen luotettavuutta ja virhelähteitä. Virhelähteet olivat kuvioittainen arviointi, kuviota kuvaavan puujoukon generointi puustotunnuksista ja kasvun ennustaminen. Aineistona oli 84 kuviota neljästä eri metsikkötyypistä Pohjois-Savon metsäkeskuksen Kerkonjoensuun suunnittelualueelta. Tutkimus pohjautui systemaattiseen koealaotantaan, jonka avulla muodostettiin tarkat puu- ja puustotason kontrollitunnukset tarkastelujakson (1–7 vuotta) alkuun sekä loppuun. Lisäksi lähtötietoina olivat käytössä tarkastelujakson alkutilan kuvioittaisella arvioinnilla kerätyt puustotunnukset. Puujoukon muodostaminen puustotason lähtötiedoista ja kasvun simulointi tarkastelujakson loppuun tehtiin Motti-metsikkösimulaattorilla. Tutkituista virhelähteistä vähiten vaikutusta oli puutason tiedon generoinnilla. Kasvun ennustevirhe aiheutti aliarviota 1,3 m2ha–1 ja 1,6 m2ha–1 kuusiositteiden pohjapinta-aloihin ja 0,8 m ja 1,0 m mäntyositteiden keskipituuksiin. Kasvuennusteen ja puutason tiedon generoinnin yhteisvirhe tuotti 0,2–0,8 cm aliarvion ositteiden keskiläpimittaan ja 1,4 m ja 1,5 m aliarviot mäntyositteiden keskipituuksiin. Kuvioittaisen arvioinnin, puutason tiedon generoinnin ja kasvuennusteen yhteisvirhe aiheutti yliarvioita runkolukuihin 427–834 ha–1 ja mäntyositteiden pohjapinta-aloihin 1,9 m2ha–1 ja 2,8 m2ha–1. Keskiläpimitta ja -pituus aliarvioitui kaikissa ositteissa. Aliarviot vaihtelivat keskiläpimitassa 3,4–6,6 cm ja keskipituudessa 0,0–3,2 m. Tutkimuksen tarkastelujaksolla kuvioittaisen arvioinnin virheet olivat suurin epävarmuuden aiheuttaja ajantasaistetuissa puustotunnuksissa.