Puuston laatutunnusten mittaus ja mallinnus
Pyörälä J., Räsänen T., Hämäläinen J., Maltamo M., Karjalainen T., Peuhkurinen J., Repola J., Mäkinen H., Hyyppä J., Holopainen M. (2019). Puuston laatutunnusten mittaus ja mallinnus. Metsätieteen aikakauskirja vuosikerta 2019 artikkeli 10253. https://doi.org/10.14214/ma.10253
Vastaanotettu 27.9.2019 Hyväksytty 30.9.2019 Julkaistu 14.10.2019
Katselukerrat 6721
Saatavilla https://doi.org/10.14214/ma.10253 | Lataa PDF
Metsäteollisuustuotteiden jalostusarvon lisääminen on yksi keskeisimpiä tavoitteita tulevaisuuden metsien hoitoa ja käyttöä suunniteltaessa. Yksi keino metsäteollisuustuotteiden jalostusarvon kasvattamiseksi on raaka-aineen tarkempi valinta, eli puunhankinnan entistä tarkempi kohdistaminen ja puun täsmäohjaus tuotantolaitoksille. Täsmällinen ja ajantasainen laatutieto mahdollistaisi lopputuotelähtöisen raaka-aineen valinnan jo tuotannon ja puunhankinnan suunnitteluvaiheessa, metsäteollisuuden puuvarastojen osittaisen siirron pystypuustoon ja raaka-aineen laatuominaisuuksien huomioimisen kaikissa korjuu- ja tuotantoketjun eri vaiheissa.
Puuston jalostusarvoon vaikuttavat runkojen järeys ja laatu. Keskeinen pullonkaula on, että puun laatua ei pystytä arvioimaan pystypuista riittävän tarkasti. Käytännössä ainoa nykyisessä metsävaratiedossa oleva puuston laatua indikoiva tunnus on puulajeittainen keskijäreys. Puuston laatu on kuitenkin pelkkää järeyttä monimutkaisempi kokonaisuus, sillä laadulla tarkoitetaan puuaineen ominaisuuksia, jotka vaikuttavat puun käytettävyyteen erilaisissa lopputuotteissa. Usein tarkasteluja ominaisuuksia ovat mm. lustojen leveys, kevät- ja kesäpuuosuuksien vaihtelu ja puun oksaisuus, jotka vaikuttavat puuaineen tiheyteen ja solurakenteeseen, ja edelleen sahatavaran jäykkyyteen, lujuuteen, kestävyyteen, muotopysyvyyteen ja ulkonäköön. Puuaineen ominaisuuksien perusteella sahatavaralle, tukeille tai puille voidaan määrittää käyttötarkoituksesta riippuvia laatuluokkia.
Puuaineen ominaisuudet määräytyvät puun kasvussa, eli puunmuodostuksessa. Muodostuvan puuaineen lustojen leveyteen, kevät- ja kesäpuuosuuteen ja kuitujen ominaisuuksiin vaikuttavat puun ikä sekä lukuiset ulkoiset seikat, kuten puulajikohtainen kasvutapa, kasvupaikka, kilpailu, ilmasto ja erilaiset häiriöt. Näiden tekijöiden vaikutus puiden kasvuun voidaan havaita myös puuston ulkoisissa piirteissä, joita ovat esim. rungon järeys ja muoto, oksien ominaisuudet, lukumäärä ja koko, sekä latvuksen muoto ja koko. Näitä tunnuksia voidaan kutsua puuston laatutunnuksiksi, tai laatuindikaattoreiksi.
Metsävarojen inventointi pohjautuu nykyään kaukokartoitusmenetelmien käyttöön. Laajojen alueiden inventointi perustuu pääasiassa lentolaserkeilauksella yleistettäviin spatiaalisiin malleihin, jotka rakennetaan koeala- tai metsikkötason maastomittauksista. Puuston laatutunnusten mittaaminen olisi mahdollista nykyisillä kaukokartoitukseen perustuvilla inventointimenetelmillä. Maa- ja metsätalousministeriön Puuston laatutunnusten mittaus -hankkeessa tehtyjen tutkimusten perusteella lentolaserkeilauksella voidaan perinteisen aluepohjaisen inventoinnin ja mallinnuksen puitteissa ennustaa kohtuullisella tarkkuudella puuston keskijäreys, tukkitilavuus ja latvusraja. Tulevaisuuden metsävarojen inventoinnissa lentolaserkeilausdatan resoluutio todennäköisesti entisestään paranee, mikä saattaa mahdollistaa myös tarkempien laatuindikaattorien mallintamisen. Malleihin vaadittavaa yksityiskohtaisempaa maastoreferenssiä voidaan kerätä esimerkiksi maastolaserkeilauksella. Maastolaserkeilauksella voidaan mitata pystypuista hyvällä tarkkuudella tukkien järeystunnuksia, oksien kokoa ja jakaumaa sekä kohtuullisella tarkkuudella lenkoutta. Jos maastolaserkeilausta käytettäisiin yksinpuintulkinnan mahdollistavan lentolaserkeilauksen referenssinä, voitaisiin näitä entistä yksityiskohtaisempia laatutunnuksia yleistää laajemmille alueille ja tuottaa hakkuukohteista laatukarttoja puunhankinnan suunnitteluun.
Kaksi keskeistä laatutunnusta, latvusraja ja toteutunut tukkitilavuus voidaan johtaa lentolaserkeilausaineistosta monella eri menetelmällä niin metsikkö- kuin puutasollakin. Tutkimuksissa on käytetty lähimmän naapurin menetelmää (k nearest neighbours, k-NN), puutason sekamallia, koealatason regressiomallia ja latvusrajan osalta myös suoraan laserpisteaineistoon perustuvaa alpha shape -estimaattia. Yleisesti ottaen soveltuvin menetelmä on k-NN menetelmä, joka on menetelmällisesti yhteensopiva nykyisen inventoinnin kanssa. Mallien siirtäminen toisille alueille heikentää ennusteiden tarkkuutta, mutta tarkkuutta voidaan parantaa kalibroimalla malleja puukohtaisilla maastomittauksilla kohdealueella.
Tukkitilavuuden ja latvusrajan liittäminen osaksi laserinventoinnissa mitattavia tunnuksia mahdollistaisi puuaineen ominaisuuksien tai esimerkiksi sahatavaran laatuluokkajakaumien arvioimisen, jos tarkkaa, paikkatietoon sidottua laatuaineistoa sahalta tai hakkuukoneelta, sekä maastossa kerättyä puuston laatutunnusreferenssiä voitaisiin käyttää laskennan perusteena. Tutkimuksissa on jo osoitettu, että yhdistämällä laajojen alueiden avointa lentolaserkeilausdataa tehtaiden tukkiröntgendataan voidaan tuottaa karkeita laatuluokituskarttoja – vaikka koko Suomen alueelle.
Arbonaut Oy:n ja Metsäteho Oy:n tekemässä tutkimuksessa käytettiin kolmen mäntysahan tukkiröntgen- ja tukkimittariaineistoa useasta tuhannesta kaupasta, sekä laserkeilausaineistoa usealta kymmeneltä keilausalueelta sahojen puunhankinta-alueilta. Sahojen mittausjärjestelmät mittaavat tukeista kymmeniä erilaisia tunnuksia, jotka vaihtelevat sahalta toiselle eivätkä ole välttämättä yhteismitallisia keskenään. Tutkimuksessa käytettiin siksi laatuindeksiä, joka muodostettiin tukkien järeyden, oksaryhmien välin ja oksien suhteellisen osuuden perusteella. Tarkasteltaville kuvioille laskettiin laserkeilausaineistosta ja VMI-karttatiedosta puuston rakennetta, maaston topografiaa, kasvupaikkaa ja puulajisuhteita kuvaavia piirteitä. Korrelaatioanalyysin perusteella puuston suurempi pituus ja korkeampi latvusraja indikoivat korkeampaa laatuindeksiä. Karummalla kasvupaikalla kasvavat männyt olivat keskimäärin parempilaatuisia kuin rehevimmillä kasvupaikoilla kasvavat. Lisäksi sekametsä indikoi parempaa mäntytukin laatua kuin puhdas männikkö. Lopulliseen malliin valittiin selittäviksi muuttujiksi laserpiirteisiin perustuvat puuston pituus ja latvusrajaennuste sekä kasvupaikka. Mallin selitysaste oli yli 0,3 (Kuva 1).
Tulosten perusteella sahojen tukkiröntgenaineistoja ja operatiivisia kaukokartoitus- ja kartta-aineistoja yhdistämällä voidaan siis ennustaa mäntytukkien sisäistä laatua suurille alueille, kun ennustemallin tulosta tulkitaan suuntaa-antavana ”paremmuusjärjestyksenä”. Malli voitaisiin laatia myös suoraan avoimesta metsävaratiedosta saatavien muuttujien perusteella, jolloin ei välttämättä tarvitsisi prosessoida suurta määrä laserkeilausaineistoa. Menetelmän kehittäminen operatiiviseksi edellyttää, että sahojen ja hakkuukoneiden katkonta- ja mittaustiedosta lasketut puuston laatua kuvaavat tunnusluvut yhdistetään aina tarkkaan paikkatietoon.
Aineistojen kehittyessä olisi mahdollista laatia myös sahakohtaisia täsmämalleja, joilla voitaisiin estimoida juuri kyseisen sahan laatukriteerien mukaista laatua. Yksityiskohtaisempien laatukarttojen laatiminen edellyttäisi tiheäpulssista lentolaserkeilausdataa sekä mallinnusdataa, jossa yhdistyisivät maastolaserkeilauksella ja tukkiröntgenillä mitatut laatutunnukset.
Maastolaserkeilauksella tuotetuista puukohtaisista pistepilvistä voidaan jo nykyisellään mitata automaattisin menetelmin yksittäisten oksien lukumäärä ja läpimitat kuolleen latvuksen osalta, ja mallintaa tukkiosan runkogeometria vastaavalla tarkkuudella kuin sahalla. Tutkimuksissa on myös havaittu, että maastolaserkeilauksella mitattu männyn suurimman oksan läpimitta ei eroa tilastollisesti merkittävästi tukkiröntgenillä mitatusta suurimman sisäoksan läpimitasta. Havaintojen perusteella maastolaserkeilauksella hankittu maastoreferenssi mahdollistaisi siis esimerkiksi puuaineen tiheyden, oksavälien pituuden sekä suurimman oksan läpimitan mallintamisen, kun mallinnukseen käytetään sahojen mittaustietoa. Menetelmää hyödyntämällä voitaisiin siis tarkentaa laserinventoinnissa käytettävien puulistojen laatuarviota, ja laatia yksityiskohtaisempia puukohtaisia laatuennusteita laajoille inventointialueille.
Tutkimuksien perusteella keskeiset kehittämistarpeet laatutiedon saattamiseksi osaksi operatiivista kaukokartoitukseen perustuvaa laserinventointia (erityisesti metsäteollisuudessa) ovat: 1) tarkan paikkatiedon tallentaminen operatiivisessa puunkorjuussa, 2) siirtyminen tiheäpulssisempien avoimien ALS-aineistojen keruuseen, sekä 3) maastolaserkeilauksen käyttöönotto ja laatutunnusten sisällyttäminen koealamittauksiin.
Koealoilta puuston laatutunnusten mittaamisen vaihtoehtona voi tulevaisuudessa olla hakkuukoneiden lähikeilauksella tuottama pystypuuston mittaustieto tai laatutunnusten estimointi tuotantomittaus- ja katkontatiedoista.
Näiden kehitysaskeleiden myötä tulevaisuuden laatutiedon inventointiketju voisi näyttää esimerkiksi seuraavanlaiselta (Kuva 2):
1. Puuston laatutunnukset mitataan koealoilla maastolaserkeilauksella:
2. Laatutunnukset yleistetään koko inventointialueelle tai kalibroidaan toiselle alueelle lentolaserkeilauksella:
3. Ennustetaan laatutunnuksilla puuston laatua suhteessa sahojen mittaustietoon, useita vaihtoehtoja:
Karjalainen T., Korhonen L., Packalen P., Maltamo M. (2019). The transferability of airborne laser scanning based tree level models between different inventory areas. Canadian Journal of Forest Research 49(3): 228-236. https://doi.org/10.1139/cjfr-2018-0128.
Maltamo M., Karjalainen T., Repola J., Vauhkonen J. (2018). Incorporating tree- and stand-level information on crown base height into multivariate forest management inventories based on airborne laser scanning. Silva Fennica 52(3) article 10006. https://doi.org/10.14214/sf.10006.
Pyörälä J., Kankare V., Liang X., Saarinen N., Rikala J., Kivinen V.-P., Sipi M., Hyyppä J., Holopainen M., Vastaranta M. (2019). Assessing log geometry and wood quality in standing timber using terrestrial laser-scanning point clouds. Forestry 92(2): 77–87. http://www.doi.org/10.1093/forestry/cpy044.
Pyörälä J., Kankare V., Vastaranta M., Rikala J., Holopainen M., Sipi M., Hyyppä J., Uusitalo J. (2018). Comparison of terrestrial laser scanning and X-ray scanning in measuring Scots pine (Pinus sylvestris L.) branch structure. Scandinavian Journal of Forest Research 33(3): 291–298. https://doi.org/10.1080/02827581.2017.1355409.