Tässä tutkimuksessa on pyritty kehittämään menetelmiä kuvioittaisella arvioinnilla tuotettujen vanhojen kuvioiden rajojen korjaamiseen numeeristen ortoilmakuvien automaattisen segmentoinnin avulla. Vanhoissa kuviorajoissa esiintyy paljon erityyppisiä sijaintivirheitä, jotka johtuvat suureksi osaksi siitä, että kuvioinnissa käytetty ilmakuva-aineisto ei ole ollut riittävän tarkkaa maastossa olevien kohteiden paikantamiseen. Lisäksi osassa kuvioista rajaus on muuttunut edellisestä inventointiajankohdasta esim. tehtyjen metsänhoitotoimenpiteiden takia.
Kuvioinnin korjaamisessa käytettiin kolmea vaihtoehtoista menetelmää. Ns. moodisegmenttimenetelmässä tutkimusalueelle luotiin suuri joukko pienehköjä segmenttejä, joille annettiin sen vanhan kuvion tunnus, jolle suurin osa segmentistä kuului. Kaikki samaan alkuperäisen kuvioinnin kuvioon kuuluneet segmentit yhdistettiin uudeksi kuvioksi. Toisessa menetelmässä muodostettiin automaattisesti uusi kuviointi, jossa uusien kuvioiden minimikooksi asetettiin 0,2 ha. Kolmannessa menetelmässä segmentit jaettiin kahteen pääryhmään: 1) todennäköisesti oikein rajatuilla alueilla oleviin segmentteihin ja 2) segmentteihin, jotka olivat todennäköisesti virheellisesti rajatulla alueella. Pääryhmässä 1 segmenteille palautettiin sen alkuperäisen kuvion numero, jonka alueella ne sijaitsivat. Pääryhmässä 2 segmentit yhdistettiin ilmakuvapiirteiden perusteella lähimpiin naapurikuvioihin tai segmentteihin.
Esitetyillä menetelmillä voidaan helposti korjata pienet siirtymät selväpiirteisessä kuviorajassa. Täysin automaattinen vanhan kuvioinnin virheiden korjaaminen ei kuitenkaan onnistu kuviointivirheiden komplisoidun luonteen vuoksi.
Tutkimuksessa on esitetty menetelmä erotuskuvatekniikan soveltamisesta numeerisille ilmakuville sekä testattu menetelmän luotettavuus metsässä tapahtuneiden muutosten tunnistamiseksi. Kuviokartan ja erotuskuvan avulla tulkittiin muuttuneet kuviot ja tulkinnan tuloksia verrattiin maastossa kartoitettuihin muutoksiin. Tulosten mukaan menetelmällä on luotettavasti tulkittavissa esimerkiksi maanmuokkaukset ja päätehakkuut. Lievemmät muutokset, kuten harvennukset, eivät menetelmällä erottuneet.
Tutkimuksessa selvitettiin korkearesoluutioisen E-SAR-tutkakuvan tarkkuutta koealatason metsikkötunnusten estimoinnissa. E-SAR-tutkakuvaukset suoritettiin syksyllä 2000 ja keväällä 2000 ProSmart II -projektissa, jonka tarkoituksena oli tutkia tuolloin suunnitteilla olleen TerraSAR-X-satelliittisysteemin potentiaalisia sovellusalueita. Metsikkötunnusten estimointi tehtiin käyttäen ei- parametrista k:n lähimmän naapurin (k-nn) -menetelmää ja tarkkuuden arviointi ristiinvalidiointi-menetelmällä. Estimoituja metsikkötunnuksia olivat kokonaistilavuus, puulajikohtaiset tilavuudet ja osuudet, pohjapinta-ala, keskipituus ja keskiläpimitta. E-SAR-tulkinnan tarkkuutta verrattiin numeeristen ilmakuvien sekä keskiresoluution optisen aallonpituusalueen Landsat ETM -satelliittikuvien tarkkuuteen. Maastoaineistona käytettiin 199 relaskooppikoealaa. E-SAR-estimoinnin suhteelliset RMSE-arvot olivat parhaimmillaan kokonaistilavuudelle, keskiläpimitalle, keskipituudelle ja pohjapinta-alalle 44,8 %, 27,8 %, 27,5 %, 38,3 %. Vertailuaineistona olleille numeerisille ilmakuville vastaavat suhteelliset RMSE-arvot olivat 49,3 %, 25,6 %, 26,5 % ja 40,6 % ja Landsat ETM -kuville 58,3 %, 38,5 %, 34,5 % ja 46,9 %. E-SAR-tutkakuvat toimivat parhaiten kokonaistilavuuden estimoinnissa, jossa niiden tuottama estimointitarkkuus oli huomattavasti sekä ilmakuvaa että Landsat ETM-kuvaa tarkempi. Keskiläpimitan, keskipituuden ja pohjapinta-alan estimoinnissa E-SAR-tutkakuvat sekä numeeriset ilmakuvat tuottivat suurinpiirtein yhtä tarkan tuloksen, joka oli kuitenkin huomattavasti Landsat ETM -kuvaa parempi. Puulajien tilavuuksien ja osuuksien osalta numeeriset ilmakuvat tuottivat E-SAR-kuvia tarkemman estimointituloksen.